Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37917177

RESUMO

Control of visceral leishmaniasis (VL) depends on proinflammatory Th1 cells that activate infected tissue macrophages to kill resident intracellular parasites. However, proinflammatory cytokines produced by Th1 cells can damage tissues and require tight regulation. Th1 cell IL-10 production is an important cell-autologous mechanism to prevent such damage. However, IL-10-producing Th1 (type 1 regulatory; Tr1) cells can also delay control of parasites and the generation of immunity following drug treatment or vaccination. To identify molecules to target in order to alter the balance between Th1 and Tr1 cells for improved antiparasitic immunity, we compared the molecular and phenotypic profiles of Th1 and Tr1 cells in experimental VL caused by Leishmania donovani infection of C57BL/6J mice. We also identified a shared Tr1 cell protozoan signature by comparing the transcriptional profiles of Tr1 cells from mice with experimental VL and malaria. We identified LAG3 as an important coinhibitory receptor in patients with VL and experimental VL, and we reveal tissue-specific heterogeneity of coinhibitory receptor expression by Tr1 cells. We also discovered a role for the transcription factor Pbx1 in suppressing CD4+ T cell cytokine production. This work provides insights into the development and function of CD4+ T cells during protozoan parasitic infections and identifies key immunoregulatory molecules.


Assuntos
Interleucina-10 , Infecções por Protozoários , Células Th1 , Células Th1/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Linfócitos T Reguladores/imunologia , Camundongos Endogâmicos C57BL , Leishmania donovani , Leishmaniose Visceral/imunologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Infecções por Protozoários/imunologia , Humanos , Animais , Camundongos , Proteína do Gene 3 de Ativação de Linfócitos/antagonistas & inibidores , Interferon gama/metabolismo , Ligação Proteica , Regiões Promotoras Genéticas/imunologia , Modelos Animais de Doenças
2.
Environ Toxicol ; 38(10): 2509-2523, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37461856

RESUMO

Fungal endophytes have established new paradigms in the area of biomedicine due to their ability to produce metabolites of pharmacological importance. The present study reports the in vitro cytotoxic and in ovo antiangiogenic activity of the ethyl acetate (EA) extract of Penicillium oxalicum and their chemical profiling through Gas Chromatography-Mass Spectrometry analysis. Treatment of the EA extract of P. oxalicum to the selected human breast cancer cell lines (MDA-MB-231 and MCF-7) leads to the reduced glucose uptake and increased nitric oxide production suggesting the cytotoxic activity of EA extract of P. oxalicum. Our results further show that treatment of EA extract of P. oxalicum attenuates the colony number, cell migration ability and alters nuclear morphology in both the human breast cancer cell lines. Furthermore, the treatment of EA extract of P. oxalicum mediates apoptosis by increasing the expression of BAX, P21, FADD, and CASPASE-8 genes, with increased Caspase-3 activity. Additionally, in ovo chorioallantoic membrane (CAM) assay showed that the treatment of EA extract of P. oxalicum leads to antiangiogenic activity with perturbed formation of blood vessels. Overall, our findings suggest that the EA extract of P. oxalicum show in vitro cytotoxic and antiproliferative activity against human breast cancer cell lines, and in ovo antiangiogenic activity in CAM model.


Assuntos
Antineoplásicos , Neoplasias da Mama , Penicillium , Humanos , Feminino , Antineoplásicos/farmacologia , Penicillium/genética , Penicillium/metabolismo , Neoplasias da Mama/tratamento farmacológico
3.
Cell Immunol ; 361: 104272, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33445051

RESUMO

Visceral leishmaniasis (VL) is a potentially fatal parasitic disease causing high morbidity and mortality in developing countries. Vaccination is considered the most effective and powerful tool for blocking transmission and control of diseases. However, no vaccine is available so far in the market for humans. In the present study, we characterized the hypothetical protein LDBPK_252400 of Leishmania donovani (LdHyP) and explored its prophylactic behavior as a potential vaccine candidate against VL. We found reduced hepato-splenomegaly along with more than 50% parasite reduction in spleen and liver after vaccination in mice. Protection in vaccinated mice after the antigen challenge correlated with the stimulation of antigen specific IFN-γ expressing CD4+T cell (~4.6 fold) and CD8+T cells (~2.1 fold) in vaccinated mice in compared to infected mice, even after 2-3 months of immunization. Importantly, antigen-mediated humoral immunity correlated with high antigen specific IgG2/IgG1 responses in vaccinated mice. In vitro re-stimulation of splenocytes with LdHyP enhances the expression of TNF-α, IFN-γ, IL-12 and IL-10 cytokines along with lower IL-4 cytokine and IL-10/IFN-γ ratio in vaccinated mice. Importantly, we observed ~3.5 fold high NO production through activated macrophages validates antigen mediated cellular immunity induction, which is critical in controlling infection progression. These findings suggest that immunization with LdHyP mount a very robust immunity (from IL-10 towards TFN-γ mediated responses) against L. donovani infection and could be explored further as a putative vaccine candidate against VL.


Assuntos
Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/tratamento farmacológico , Animais , Antígenos de Protozoários/imunologia , Citocinas/imunologia , Imunidade Celular/imunologia , Imunização/métodos , Leishmania donovani/imunologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Vacinação/métodos
4.
Nat Immunol ; 21(10): 1205-1218, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839608

RESUMO

Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Malária/imunologia , Proteínas de Membrana/metabolismo , Plasmodium/fisiologia , Animais , Células Cultivadas , Citotoxicidade Imunológica , Modelos Animais de Doenças , Exocitose , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Vesículas Secretórias/metabolismo
5.
Cell Rep ; 30(8): 2512-2525.e9, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101732

RESUMO

Type I interferons (IFNs) play critical roles in anti-viral and anti-tumor immunity. However, they also suppress protective immune responses in some infectious diseases. Here, we identify type I IFNs as major upstream regulators of CD4+ T cells from visceral leishmaniasis (VL) patients. Furthermore, we report that mice deficient in type I IFN signaling have significantly improved control of Leishmania donovani, a causative agent of human VL, associated with enhanced IFNγ but reduced IL-10 production by parasite-specific CD4+ T cells. Importantly, we identify a small-molecule inhibitor that can be used to block type I IFN signaling during established infection and acts synergistically with conventional anti-parasitic drugs to improve parasite clearance and enhance anti-parasitic CD4+ T cell responses in mice and humans. Thus, manipulation of type I IFN signaling is a promising strategy for improving disease outcome in VL patients.


Assuntos
Imunidade/efeitos dos fármacos , Interferon Tipo I/farmacologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Parasitos/imunologia , Anfotericina B/farmacologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Epitopos , Humanos , Inflamação/imunologia , Inflamação/patologia , Interferon gama/farmacologia , Camundongos Endogâmicos C57BL , Nitrilas , Parasitos/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
BMC Infect Dis ; 18(1): 692, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587145

RESUMO

BACKGROUND: Oncogenic Human papillomavirus (HPV) infections are closely associated with anal cancer which is high among human immunodeficiency virus (HIV) infected males. There are no data regarding anal HPV infection and cytological abnormalities in HIV positive males receiving free therapy in the national program. Thus, this cross-sectional study was performed to assess the prevalence and risk factors of anal HPV infection and cytological abnormalities in HIV positive males. METHODS: We screened 126 HIV-positive male patients attending the antiretroviral treatment center (ART) between 2014 and 2015 with anal papanicolaou smear cytology and HPV-DNA testing. HPV-DNA was detected by using polymerase chain reaction (PCR) method with two consensus primer sets E6 and MY09/11 and further analyzed for the presence of various HPV genotype by Sanger sequencing. Risk factors associated with anal cytological abnormalities and HPV infection was analyzed by using univariate and multivariate logistic regression models. RESULTS: Out of 126, 52 were on antiretroviral therapy. 91% were married to female partners but during the study 48 (38%) gave positive history of anal intercourse with other men. Anal cytology was done in 95 patients, out of which 60 (63.15%) had cytological abnormalities. LSIL (low-grade squamous intraepithelial lesions) was present in 27 (45%), ASCUS (atypical squamous cells of undetermined significance) in 31 (52%) and ASC-H (atypical squamous cells cannot exclude a high-grade squamous intraepithelial lesion) in 2 (3.33%). In multivariate analysis, the risk factors for cytological abnormality were presence of history of anal intercourse (OR, 6.1; 95% CI, 2.0-18.7) and WHO stage III & IV (OR, 2.7; 95% CI, 1.1-7.5). HPV-DNA was detected in 33/119 (27.73%) patients. The most prevalent HPV type in the study was HPV-16 (10.08%), other HPV types detected were 18,31,35,17,66,72,52,68 and 107 (17.65%). CONCLUSIONS: High prevalence of anal cytological abnormalities in our study suggests that regular anal Pap smear screening should be done in HIV positive males in the ART center.


Assuntos
Canal Anal/patologia , Neoplasias do Ânus/epidemiologia , Neoplasias do Ânus/patologia , Infecções por HIV/epidemiologia , Homossexualidade Masculina/estatística & dados numéricos , Infecções por Papillomavirus/epidemiologia , Infecções Oportunistas Relacionadas com a AIDS/epidemiologia , Infecções Oportunistas Relacionadas com a AIDS/patologia , Adulto , Canal Anal/virologia , Neoplasias do Ânus/complicações , Neoplasias do Ânus/virologia , Coinfecção/epidemiologia , Coinfecção/patologia , Estudos Transversais , Feminino , Genótipo , HIV , Infecções por HIV/complicações , Infecções por HIV/patologia , Soropositividade para HIV/complicações , Soropositividade para HIV/epidemiologia , Soropositividade para HIV/patologia , Papillomavirus Humano 16/isolamento & purificação , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/patologia , Prevalência , Fatores de Risco , Comportamento Sexual/estatística & dados numéricos , Minorias Sexuais e de Gênero/estatística & dados numéricos
7.
Front Immunol ; 8: 1492, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167671

RESUMO

Leishmaniasis encompasses a group of diseases caused by protozoan parasites belonging to the genus Leishmania. These diseases range from life threatening visceral forms to self-healing cutaneous lesions, and each disease manifestations can progress to complications involving dissemination of parasites to skin or mucosal tissue. A feature of leishmaniasis is the key role host immune responses play in disease outcome. T cells are critical for controlling parasite growth. However, they can also contribute to disease onset and progression. For example, potent regulatory T cell responses can develop that suppress antiparasitic immunity. Alternatively, hyperactivated CD4+ or CD8+ T cells can be generated that cause damage to host tissues. There is no licensed human vaccine and drug treatment options are often limited and problematic. Hence, there is an urgent need for new strategies to improve the efficacy of current vaccine candidates and/or enhance both antiparasitic drug effectiveness and subsequent immunity in treated individuals. Here, we describe our current understanding about host immune responses contributing to disease protection and progression in the various forms of leishmaniasis. We also discuss how this knowledge may be used to develop new strategies for host-directed immune therapy to prevent or treat leishmaniasis. Given the major advances made in immune therapy in the cancer and autoimmune fields in recent years, there are significant opportunities to ride on the back of these successes in the infectious disease domain. Conversely, the rapid progress in our understanding about host immune responses during leishmaniasis is also providing opportunities to develop novel immunotherapy strategies that could have broad applications in diseases characterized by inflammation or immune dysfunction.

8.
PLoS Negl Trop Dis ; 10(2): e0004415, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26872334

RESUMO

Chronic disease caused by infections, cancer or autoimmunity can result in profound immune suppression. Immunoregulatory networks are established to prevent tissue damage caused by inflammation. Although these immune checkpoints preserve tissue function, they allow pathogens and tumors to persist, and even expand. Immune checkpoint blockade has recently been successfully employed to treat cancer. This strategy modulates immunoregulatory mechanisms to allow host immune cells to kill or control tumors. However, the utility of this approach for controlling established infections has not been extensively investigated. Here, we examined the potential of modulating glucocorticoid-induced TNF receptor-related protein (GITR) on T cells to improve anti-parasitic immunity in blood and spleen tissue from visceral leishmaniasis (VL) patients infected with Leishmania donovani. We found little effect on parasite growth or parasite-specific IFNγ production. However, this treatment reversed the improved anti-parasitic immunity achieved by IL-10 signaling blockade. Further investigations using an experimental VL model caused by infection of C57BL/6 mice with L. donovani revealed that this negative effect was prominent in the liver, dependent on parasite burden and associated with an accumulation of Th1 cells expressing high levels of KLRG-1. Nevertheless, combined anti-IL-10 and anti-GITR mAb treatment could improve anti-parasitic immunity when used with sub-optimal doses of anti-parasitic drug. However, additional studies with VL patient samples indicated that targeting GITR had no overall benefit over IL-10 signaling blockade alone at improving anti-parasitic immune responses, even with drug treatment cover. These findings identify several important factors that influence the effectiveness of immune modulation, including parasite burden, target tissue and the use of anti-parasitic drug. Critically, these results also highlight potential negative effects of combining different immune modulation strategies.


Assuntos
Imunoterapia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/terapia , Animais , Citocinas/imunologia , Feminino , Humanos , Interleucina-10/imunologia , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Baço/parasitologia , Células Th1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA